Convergence Rates of the Ellipsoid Method on General Convex Functions

نویسنده

  • Jean-Louis Goffin
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A deep cut ellipsoid algorithm for convex programming: Theory and applications

This paper proposes a deep cut version of the ellipsoid algorithm for solving a general class of continuous convex programming problems. In each step the algoritbm does not require more computational effort to construct these deep cuts than its corresponding central cut version. Rules that prevent some of the numerical instabilities and theoretical drawbacks usually associated with the algorith...

متن کامل

An optimal first order method based on optimal quadratic averaging

In a recent paper, Bubeck, Lee, and Singh introduced a new first order method for minimizing smooth strongly convex functions. Their geometric descent algorithm, largely inspired by the ellipsoid method, enjoys the optimal linear rate of convergence. We show that the same iterate sequence is generated by a scheme that in each iteration computes an optimal average of quadratic lower-models of th...

متن کامل

Two Settings of the Dai-Liao Parameter Based on Modified Secant Equations

Following the setting of the Dai-Liao (DL) parameter in conjugate gradient (CG) methods‎, ‎we introduce two new parameters based on the modified secant equation proposed by Li et al‎. ‎(Comput‎. ‎Optim‎. ‎Appl‎. ‎202:523-539‎, ‎2007) with two approaches‎, ‎which use an extended new conjugacy condition‎. ‎The first is based on a modified descent three-term search direction‎, ‎as the descent Hest...

متن کامل

Linear Convergence of Proximal Incremental Aggregated Gradient Methods under Quadratic Growth Condition

Under the strongly convex assumption, several recent works studied the global linear convergence rate of the proximal incremental aggregated gradient (PIAG) method for minimizing the sum of a large number of smooth component functions and a non-smooth convex function. In this paper, under the quadratic growth condition–a strictly weaker condition than the strongly convex assumption, we derive a...

متن کامل

The Randomized Ellipsoid Algorithm for Constrained Robust Least Squares Problems

In this chapter a randomized ellipsoid algorithm is described that can be used for finding solutions to robust Linear Matrix Inequality (LMI) problems. The iterative algorithm enjoys the property that the convergence speed is independent on the number of uncertain parameters. Other advantages, as compared to the deterministic algorithms, are that the uncertain parameters can enter the LMIs in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1983